韩国午夜理伦三级在线观看中文版,欧美大肥婆大肥bbbbb,日韩人妻一区二区三区蜜桃视频,艳鉧动漫1~6无删减版

歡迎來到冀群(江蘇)儀器有限公司網站!
咨詢熱線

13236572657

當前位置:首頁  >  技術文章  >  英國 Labplant 噴霧干燥儀在奶粉中的應用

英國 Labplant 噴霧干燥儀在奶粉中的應用

更新時間:2021-11-30  |  點擊率:1785

英國 Labplant 噴霧干燥儀在奶粉中的應用

 

Labplant spray dryer tests

 

 

The milk used was reconstituted in the following way:

 

200g  milk powder

 

1.7L of tap water

 

giving 2L of milk with a measured density of 1.045 at 21’C.

 

We used a fixed flow, whatever the experiment ; pump flow set at 5, corresponding to

13.5mL/min.

 

Varying the injection temperature of the product

 

We did a first test with an injection temperature of 130’C and then a second test at 140’C.

 We saw that spray drying was achieved, apparently, comfortably at these two 

temperatures.Effectively no liquid ran along the walls of the main spray chamber, even at

130’C. This meant that we could work at 140’C or 130’C given the stipulated flow.

In theory it is preferable to work at 140’C, because the higher the temperature the better

the yield. We will try to prove this through our experiments.

 

Varying the compressed air ratio / feed flow

 

 

We worked with a flow set at 5 (13.5mL/min) and compressed air set at 3 bars

(constant air inlet valve opening).

 

In theory to increase the size of the agglomerate, it is necessary to favour the agglomeration

 mechanism over the drying process. One of the possible means is to decrease the spraying

 rate. In the case of this equipment, to decrease the spraying rate you can either decrease the

flow of compressed air through the injection nozzle (while keeping a constant pressure) or

you can decrease the pressure of the compressed air (while keeping a constant flow).

 

Therefore we tried two tests with constant air and liquid flows, varying the pressure from 2

to 3 bars.We observed the look of the powders we obtained ; it was difficult to decide just

with the naked eye, an additional granulometric(?) study would be necessary, but it did seem

that the powder obtained with 3 bars of pressure was effectively finer than that obtained with

 2 bars.

 

Research into the effective operational limits of the spray dryer

 

 

We retained the same solution of reconstituted milk.

 

At a given flow and pressure of air, we increased the flow of liquid from level 5

(13.5mL/min) to level 10 (28.8mL/min). We very quickly saw that the formation of the

spray in the atomisation tube was not good : in effect the quantity of liquid going through

the tube was too much and could not be vaporised on exiting the tube. This was why we had

some liquid that ran out of the tube, ran along the walls of the spray chamber, of the fan

chamber (cyclone?) and even in the recuperation chamber. Under these conditions the yield

of finished product would be bad.

 

QUANTITATIVE STUDY

 

 

The experiments carried out and the experiment details are given below.

 

Experiment 1 : starting from 100g/L of reconstituted milk

 

Amount of milk powder

 200g


Amount of water

  1700g


Volume of milk

2L


Density of milk

      1.045g/mL


Humidity of milk

        89.47 % mas


Injection temp (??)

  130’C


Injection flow

       13.5mL/min


Working time

  40 min


Compressed air pressure

 3 bars


Humidity of labo

     21.8 %HR

   6g vapour / m3 air

Ventilator flow

   70 m3/h


Gas exit temp

77’C


Air exit humidity

    18.8 %HR

    21.3g vapour / m3 air

Bottle size

339g


Bottle + wet milk

391.9


Bottle + dry milk

           390


 

From the experiment details we calculated the following:

 

humidity of the milk : 100 x water mass (water mass + powder mass)

 

numerical application : % humidity of the milk = 100 x 1700/(1700+200) = approx 89.5%

the mass of the wet milk we collected = 391.9 – 339 = 52.9g

 

the mass of the dry matter we collected = 390 – 339 = 51g

 

humidity of the solid = 100 x (52.9 – 51)/52.9 = approx 3.6%

 

Materials ‘balance sheet’ of the dry milk over the life of the experiment:

 

at the start : dry matter is the result of the solution to be tested

 

at the exit : dry matter of the solid that was obtained

 

Numerical application

 

a) at the start : 13.5mL/min x 1.045 g/mL x 40 min x (100-89.47)/100 = approx 59.4g

b) at the exit : 51g

 

c) solid yield = 100 x 51 / 59.4 = approx 85.9%

 

Materials ‘balance sheet’ of the water over the life of the experiment

 

b) at the start : (13.5mL/min x 1.045 g/mL x 40 min x 89.47 / 100) + 70 m3/h x 6 g/m3 x40/60 = 784.8 approx of water

 

c) at the exit : (52.9g x 3.6 /100) + (70m3/h x 21.3 g/m3 x 40/60) = approx 995.9

 

d) water yield = 100 x 995.9 / 784.8 = approx 127%

 


妓女精品国产噜噜亚洲av| chinese裸体男野外gay| 小秘书夹得真紧好爽h调视频| 小雪被老汉各种姿势玩弄| 亚洲av精品无码国产一区| 浴室人妻的情欲hd三级| 中文字幕丰满乱子伦无码专区| 护士在办公室里被躁中文字幕| 婷婷97狠狠成人网站| 欧美疯狂做受xxxxx高潮| av网址大全| 国产偷抇久久精品a片69| 囯产精品久久久久久久久蜜桃| 豪妇荡乳1一5全集| 好色先生tv| 公交车上~嗯啊被高潮| 女的扒开腿让男的猛进猛出| 伊人久久大香线蕉综合75| 黄金网站app在线观看| 100国产精品人妻无码| 地瓜视频app免费观看下载| 四个人客厅交换作爱| 三a级做爰片免费观看| 满了...太慢了...溢| 亚洲av无码专区国产乱码不卡| 精品少妇人妻av无码专区偷人| 久久久久成人精品无码| 在熟睡夫面前侵犯我在线播放| 精跪趴灌满白浊共妻np老师学生 | 欧美乱妇无码毛片斯巴达三百勇士 | 草莓视频在线观看| 99精品免费久久久久久久久日本| 国产成人亚洲精品无码av大片| 国产精品扒开腿做爽爽爽a片小说| 熟女大屁股白浆一区二区| 久久久亚洲av波多野结衣| 阿娇被躁120分钟视频| xxx中国肥老太xxx| a片免费| 新婚警花太紧和局长出差小说| 免费无码毛片一区二区app|